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The axlsymmetrlc problem of the Impact of an absolutely rigid disk on the 
surface of an ideal compressible fluid Is considered. This problem arises 
In connection with the entry problem of blunt bodies into a fluid, where the 
body experiences large overloads at the Initial Interval of time. In the 
present paper a solution of the problem for O< t<n/co. Is sought by the 
method of Integral transforms. The axlsymmetrlc solution obtained up to the 
second approximation Inclusively Is compared with the result of the exact 
solution of the planar problem [ 1 and 23. 

1, Let the impact of an absolutely rigid disk of radius o with the free 
surface of an Ideal compressible fluid, which occupies the lower half-space 
s > 0 (Fig.l), take place at the moment t -0. It Is assumed that the 
Initial velocity of the disk is vc~cc. Here c,, Is the velocity of sound 
of the undisturbed fluid. For these conditions, as Is not difficult to show, 
the problem will be linear for the Initial time Interval At _ o/c,, where the 
compresslblllty of the fluid is substantial and Is described In the cyllndrl- 
cal system of dimensionless coordinates rl ,z, by the following equation and 
conditions 

a2’p 
arls + &+j$=$ (1.1) 

cp=o for rr> 1, 21 = 0, 
ag, 

&$o 

G = 2’ (t) a for O<r,<l, il = 0 

for r = 0, 
cnt r z 

t =a, r1=7, 21 = -c- 

Here (P(F,,o~,T) Is the potential of the perturbed motion. In what fol- 
lows the subscript of the dimensionless Independent 
variables will be dropped. 

Such a linear formulation gives the correct 
-- solution at all points with the exception of a 

small region at the edge of the disk where there 
must be a singularity because of the discontinuity 
In the direction of the velocities. 

Fig. 1 The force acting on the disk for O<Z<~ Is 
found In the problem. The analogous planar prob- 
lem has been considered In [l and 23. 

P. The Laplace transform [3] with respect to T 
tern (1.1) 

Is applied to the sys- 
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l-l- 
WP>O) 

S’ 
Q z=o = 0 for r > i (2.9 

a b / __---_- 
_--_-- Ia@ / aflr=o = %I 0 for 0 Q r < i 

Then, applying the Hankel transform [3] with 
respect to r to Equation (2.1), it Is not dlffl- 

Fig. 2 cult to obtain for z = 0 (2.2) 
1 

s 
Q, *_&J J,(m) rdr = - 

0 

JO (rz) rdr + V (p) a \ Jo (rt) rdr] 
0 

In (2.1) and (2.2) the following notation Is adopted: J.(‘k) 1s a Be68el 
function of nth order. 

v (P) + u(r). Q, (r, z, p) 4 cp (r, 1, ‘I) 

The lnverae Hankel transform for (2.2) with p > I gives (2.3) 

It Is not dlffldult to show that 

co bidco 

s 1 

0 
JO (4 JO (SP) V$!!& = ni & 

L 

a (a) a da 
Vp’ _ z 

CQ b+fca 

s Jl(4 Jo (4 _ 

0 

v;; zs= f b_ 
s 

Ko (sp) 1, (4 (2.4) 

Here 0 < b < Ra p; K,, (2) and I,, (2) are MacDonald and Bessel functions of 
Imaginary argument corresponding to the nth order. And the branch of 
VT=-- c is chosen so that )/p-$>O for O<r<p. 

a (s) = 
KO (4 10 (SP) for r>p 
& (sp) 10 (8r) for p > r 

Substituting Expressions (2.4) Into (2. 
3 

) 
8, = 8/p (conalderlng the simplicity p > 

and making the variable change 
0 , we obtain 

h+tm h+bo 

r dr a (ps) sds _ i Ks (VP) 1, (v) - - 5 V (P) 
l/i-s ’ h-ka 

v&, (2.5) 

Here 0 < h c 1 and the eubecrlpt 1 of 8, has been omltted. 
It Is not difficult to notice now that the path of integration In (2.5) 

can be deformed along the brlanch cut AT, a8 shown ln Flg.2, Then, 
having made one essential almpllflcatlon, It is poaelble to apply asmtotlc 

analone of the cylindrical function8 for large values of their arguments 
x Let UB repnesent 

1, (q) = l/, (- i)” lH,()) (qi) + H,(l) Ml (4 = SP, spr, 8pp) 

Here Hn(j’ (gil is the Hankel function of jth kind and nth order, 
It la not difficult to notice that the functio? 

factor of exp (- 
H,(l) (qi) give8 a lag 

of the deformed pat It la seen that thle fa%tor batlsfles the inequality 
%) In comparison with H (*) (41). Moreover, from the form 

(--2q) d exp (--2P). 
Consequently, the function H (l) (qi) makes a contribution to the solution 

(2.5)ln the form of secondary, teklary, etc. dlffractlon wavea. 
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For the inverse Laplace transform these terms appear only for 7 > 2 , 
which is excluded by a condition of the problem. 
I, (4 ) In (2.5) it la necessary to substitute the 
and to make use of its asymptotlcs. 
first approximation with respect to l/p there is obtained (if the path is 
deformed into the previous position after applying the asymPtOtlcs) 

(2.61 

Let us suppose that 

- Me (P - 19 for p-* 1, P>-1 

Then (51 
9 (s, p) esp m M&-l-~ for s-+ 00 

(9 (s, P) = 5 (g)., fF’ T/y dr ) 
1 

Applying the Wiener-Hopf method to Equation (2.6), we obtain 

htiw 

(2.7) 

MakIng use of the fact that the left-hand term in the brackets of the 
integrand of (2.7) is an analytic function In the half-plane Re a e 1 , it 
is very easy to obtain from (2.7) 

g (s, p) = V @) s (u’l-s - l)esp (2.8) 

If the second approximation of $(s,p) with reSPi?Ct to l/p 1s sought, 
it is then necessary to take 

h+icm h&o 

v/Fdr ds = 
eW-WP 

h- SVI- sa 

tw 
in place of (2.6). 

It should be noted that the quantity y 

( 1 1 
T =--- 

8psr 8PSP 1 
ha8 been omitted In the term 1 + y in the integrand of the left-hand side 
of (2.9). 

This was done for the following reason. In order to find the term of 
second ap roximation, it is necessary to multiply both sides of the complete 
equation 7 2.9) by exp (s’pp) integrate with respect to p from 1 to 
infinity and determine the second term in the asymptot1.c expansion of the 
left-hand side In powers of UP ’ It turns out that the quantity y does 
not influence this term but is concerned with terms of higher order, This.is 
easily shown if [a@ i a~&~,,, obtained from (2.8) is substituted into the left- 
hand side of the complete equation (2.9). The result of the integration of 
the terms asaoclated with y then gives a quantity of third order in the 
expansion with respect to l/p . 

Thus, after repeating for (2.9) all the arguments analogous to the case 
of the first approximation, we obtain 

(2.10) 
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From (2.10) It 1s not difficult to obtain 
00 

(2.11) 

Then from (2.2) and (2.11) there Is obtained 
1 

s ‘C’z=ordr= +“p’ -;+f--_+O((p-3)] 

0 

F (r) = - 2nap,co lacp 
S( 1 = ,z=rJ 

rdr - 

0 

-naap,r,[[u(~)-~ .(z)dr+fj o(z)(r-z)dz] 

If the disk has a large mass, we can set ~(7 
to within o(? 

= v0 for O< r< 1. Then 
we obtain 

as 

0 

F (r) = nazp,cov,, (1 - t + ‘/,T’) (2.12) 

From the planar problem [1] It Is easy 
to obtain the force acting cn the plate 

lJ (ZJ = P&& (1 - l/l%) (2.13) 

(q = 2c,t / 1) (1 length of plate) 

Graphs of the dimensionless functions 

Fig. 3 

are presented In Flg.3, where the subscript 1 of the variable 7, has been 
omitted. 

From Fig.3 It can be concluded that even In the first approximation with 
respect to time the force acting on thn disk Is considerably smaller than 
the force acting on the plate. Since the first approximation with respect 
to time the solution of the axlsynnnetrlc problem must coincide with the 
planar problem, the result obtained for the forces Is easily explained as 
the difference In Integrating th\: same solution along the surface of the 
plate and the disk. This Is easily verified, using the solution of the 
planar problem [l]. It Is not even possible to obtain the term of second 
approximation from the solution of the planar problem. 

To confirm the conclusions obtained, the solution of the axlsymmetrlc 
problem of [&/&1,,0 up to the second approximation Inclusively remains to 
be given and to be compared with the planar solution 

x1's-+++(t+2r-2) 
( 

z 
tan-1 r-l- 1jq for i<r<l+T 

acp ( ) aZ *=. = O for 1 + Z < r 

If 7-0, in order that the quantity (r - 1)/7 be constant, only the 
first approximation which coincides with the solution of the problem [2] 
then remains 

(2.14) 
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