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The axisymmetric problem of the impact of an absolutely rigid disk on the
surface of an ideal compressible fluld 1s considered. This problem arises
in connection with the entry problem of blunt bodies into a fluid, where the
body experiences large overloads at the initial interval of time. In the
present paper a solution of the problem for 0 <{t<la/c. 1s sought by the
method of integral transforms. The axisymmetric solution obtained up to the
second approximation inclusively is compared with the result of the exact
solution of the planar problem [1 and 2].

1. Let the impact of an absolutely rigid disk of radius & with the free
surface of an ideal compressible fluid, which occupies the lower half-space
z > 0 (Fig.1l), take place at the moment ¢ = 0 . It is assumed that the
initial velocity of the disk 1s yy<€ ¢, Here o, is the velocity of sound
of the undisturbed fluid. For these conditions, as is not difficult to show,
the problem will be linear for the initial time interval A¢ ~ G/'c° where the
compressibility of the fluld is substantial and is described 1in the cylindri-
cal system of dimensionless coordinates r,,z, by the following equation and

conditions i?fg _32_ 6_2‘1" . @ (1.1)
or?® T rory " 9z T or? .
=0 for n>1, 2z =0, a%?:v(r)a for 0< <1, 5=0
pe Lot r A
p=7¢ =0 for T =0, TE=ET e 7

Here o(r, ,z,,7) 18 the potential of the perturbed motion. In what fol-
lows the subscript of the dimensionless independent
variables will be dropped.

Such a linear formulation gives the correct
solution at all points with the exception of a
small region at the edge of the disk where there
must be a singularity because of the discontinuity
z in the directlon of the velocities,.

The force acting on the disk for 0L 71 is
found in the problem. The analogous planar prob-
lem has been considered in [1 and 2].

E, T?e Laplace transform [3] with respect to 1 1s applied to the sys-
tem (1.1
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A0 0 AP
|) s Attt =pr0 {Re p > 0)
s
®©,_,=0 for r>1 2.1)
/
R e (00 /0s],_, =V a for 0<rH
Then, applying the Hankel transform [3] with

respect to r to Equation (2.1), it 1s not diffi-
Flg. 2 cult to obttain for 2z = O 2.2)

:S D, Ty (r) rdr = — _‘_/;’L;:’ ESO (a_ad-:-)z=o Jo(rz) rdr +V (p) a :S Jo (rz) rdr]

In (2.1) and (2.2) the following notation is adopted: J,(rx) is a Bessel
function of nth order,

V(F)*”(‘)- °(ry‘1p)"':=¢(rs”f)
The inverse Hankel transform for (2.2) with p > 1 gives (2.3)
[e2] [+ o] [+
oD z dx . dx
— dr \ J, J —_— % = —~V{(p) Jy () J —
1S(az)z=o" ’§ o (ra) o(pz)VP"i'-"’ ) a§ 1 (= O(ZP)VP"F!’
It 1s not difficult to show that
3 zdr  _ i a(3) sds
§ R e R
o0 4 1 b+ico d
J J T = K I (s) =2 (2.4)
OS R ’"'b_Sm 0 () s

Here 0 < b< Re p; K, (x) and I, (z) are MacDonald and Bessel functions of
imaginary argument corresponding to the nth order., And the branch of

VP — & 1s chosen so that VP=8>0 for 0<s< p.
_ [ Ko (s7) Io (sp) for r>p
o) = {Ko (sp) o (sr)  for p>r

Substituting Expressions (2.4) into (2.3) and making the variable change
8, = 8/p (considering the simplicity p > O?, we obtain

oo h+ico h+ico

S(ﬂ) rar | S008I~ _ 2y (Kol hiop) o 25)

P\ i hio V1I—8 p h-ico vi—#

Here O < h <1 and the subscript 1 of &, has been omitted.

It is not difficult to notice now that the path of integration in (2.5)
can be deformed along the branch cut .,/ T—ga?, as shown in Fig.2, Then,
having made one essential simplification, it ls possible to apply asymptotic
expansions of the cylindrical functions for large values of their arguments
[4]. Let us represent

I () = Yy (— )™ [H,® (gi) + H, P (g0)] (g = p, spr, spp)

Here H (" (qi) 1s the Hankel function of fth kind and nth order.

It is not difficult to notice that the function H,? (gi) gives a lag
factor of exp (— 27) 4n comparison with K _(8) (gi). Moreover, from the form
of the deformed path it is seen that this fultor satisfies the inequality
(—29) < exp (—2p).

Consequently, the function H, (1) (gi) makes a contribution to the solution
(2.5)1in the form of secondary, tebtiary, etc, diffraction waves,
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For the inverse Laplace transform these terms appear only for r > 2,
which is excluded by a condition of the problem. Consequently, in plaﬁ of
I,{(g) 1n (2.5) it 1s necessary to substitute the function Y, (— ™'H @ (4i)
and to make use Jf its asymptotlcs. It is not difficult to sée that for the
first approximation with respect to 1/p there is obtained {if the path is
deformed into the previous position after applying the asymptotics)

oo D _ h+ico spr—spe h+ico op-tpp
S (‘g) V’ dr A=V {p) S —f __ds (2.8)
: 2220 n Vi-—-—sz P h-Yoo S Y1—3

Let us suppose that
P B
(T) ~Myp—1) for p— 1,3 >—1
2 /=0

Then [5]
Vs, p) P~ Ms™®  for s o0

Fr ]/; dr )

[}

(06 =§ (%

Applying the Wiener-Hopf method to Equation (2.6), we obtain
h+ico
[‘P (8:P) jop 1 _ViD)a ] ds =0 Q.0
o lVT — psV1—sls—s

)om

Making use of the fact that the left~hand term in the brackets of the
integrand of (2.7) 1s an analytic function in the half-plane Re g < 1 , it
is very easy to obtain from (2.7)

V(6P =V @ gy (VT=s— e (2.8)

If the second approximation of q(s,p) with respect to l/p is sought,
it is then necessary to take

-] oD _ h+ioo spr—spe h+ico sp-spo 3 ’
S(..._) Viar \ 0 gs=—_ % vip) e_,ﬁ( _______>ds
= 3
: z=0 . YVi— & P htoo & yi— ¢ 8ps 8psp

(2.9)
in place of (2.6).
1t should be noted that the quantity v

( =L _k)

Y = 8psr — 8psp

has(beex; omitted in the term 1 + vy 1in the integrand of the left-hand side
of {(2.9).

This was done for the following reason. In order to find the term of
second approximation, it is necessary to multiply both sides of the complete
equation (2.9) by exp (8'pp) integrate with respect to p from 1 to
infinity and determine the second term in the asymptotlc expansion of the
left-hand side in powers of 1/p . It turns out that the quantity vy does
not influence this term but is concerned with terms of higher order, This is
easily shown if [9® /dz], _,, obtained from (2.8} is substituted into the left-
hand side of the completé equation (2.9). The result of the integration of
the terms assoclated with y then gives & quantity of third order in the
expansion with respect to 1/p .

Thus, after repeating for (2.9) all the arguments analogous to the case
of the first approximation, we obtaln
1

i 1 R
xp(s,p)=e"avp(f)[lfi—s—-i+§5(1—~V1—s)—z;}/1—s] 2.10)
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From (2.10) it is not difficult to obtain
[e o]

§ (&) i =2V () [~ +atow™)] (2.11)
1 =

Then from (2.2) and (2.11) there is obtained
(o rar= 2V [-—_1_+L—i+0(p‘“)]
} =0 N3 2 "% 8p
1 T 1 T
F (1) = — 2mapecy S (%ﬁ:l) rdr =~ na”poco[v () — S v (z) de + T S v(z) (v —2) dz]
: z=0 0 0

If the disk has a large mass, we can set v('rg =y, for 0 r<1. Then
to within ¢(+®) we obtain

F (v) = malpgeevy (1 — T + Yg1Y) (2.12)

'S

—
N l
1l 7 From the planar problem [1] it is easy
a5 ‘\\4‘\ Y to obtain the force acting cn the plate
o TN P (%) = pocoral (1 — Vgt (2.43)
J \t (ty = 2¢4t / 1) (I length of plate)
225 45 a7 7 ~
Graphs of the dimensionless functions
Flg. 3 F (v) P (v)

Fy (1) = Py(t) =——

Pocoto!
are presented in Flg,3, where the subscript 1 of the variable r, has been
omitted.

From Fig.3 1t can be concluded that even in the first approximation with
respect to time the force acting on the disk is considerably smaller than
the force acting on the plate. 8ince the first approximation with respect
to time the solution of the axisymmetric problem must coinclde with the
planar problem, the result obtained for the forces 1s easily explained as
the difference 1in integrating thc same solution along the surface of the
plate and the disk. This 1s easily verified, using the solution of the
planar problem [1]. It is not even possible to obtain the term of second
approximation from the solutlon of the planar problem.

To confirm the conclusions obtained, the solution of the axisymmetric
problem of [6(1)/67.]2=0 up to the second approximation inclusively remains to
be given and to be compared with the planar solution

(%>z=0=n :/07 [(2 _—:—) c,.-.(f : 1)%_ 2(&_ 1)1"_% X

[ A
><Vf—r+1+7(r+2r—2) un-'(;_ig—i) ] for 1< r<lt+

Tapycovy ’

(%’;)z:():O for 1 4 v<r

If 1~ 0, in order that the quantity (r — 1)/t be constant, only the
first approximation which coincides with the solution of the problem [ 2]

then remains . ,
(30~ () - (- )] "




974

V.B. Poruchikov

BIBLIOGRAPHY

Galin, L.A., Udar po tverdomu telu, nakhediashchemusia na poverkhnosti
szhimaemoi zhidkosti (The impact on a solid body lying on the surface
of a compressible fluid). py¥ Vol.ll, N 5, 1947.

Flitman, L.M., Ob odnoi smeshannoi kraevoi zadache dlia volnovogo urav-
nenilia (On a mixed boundary value problem for the wave equation). Fy¥
Vol.22, N 6, 1958,

Ditkin, V.A. and Prudnikov, A.P., Integral'nye preobrazovanila 1 opera-
tslonnoe ischislenie (Integral Transforms and Operational Calculus).
Fizmatgiz, 1961.

Gradshteln, I.S. and Ryzhik, I.M., Tablitsy integralov, summ, riadov 1
proizvedenil éTables of Integrals, Sums, Series and Products).
Fizmatgiz, 1963.

Noble, B.,, Metod Vinera-Khopfa (The Wiener-Hopf method). Izd.inostr.
1it,, 1962.

Trenslated by R.D.C.



